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Abstract

We present a practical, differentially private algorithm for answering a large number of queries on
high dimensional datasets. Like all algorithms for this task, ours necessarily has worst-case complexity
exponential in the dimension of the data. However, our algorithm packages the computationally hard step
into a concisely defined integer program, which can be solved non-privately using standard solvers. We
prove accuracy and privacy theorems for our algorithm, and then demonstrate experimentally that our
algorithm performs well in practice. For example, our algorithm can efficiently and accurately answer
millions of queries on the Netflix dataset, which has over 17,000 attributes; this is an improvement on
the state of the art by multiple orders of magnitude.'

1 Introduction

Privacy is becoming a paramount concern for machine learning and data analysis tasks, which often op-
erate on personal data. For just one example of the tension between machine learning and data privacy,
Netflix released an anonymized dataset of user movie ratings for teams competing to develop an improved
recommendation mechanism. The competition was a great success (the winning team improved on the ex-
isting recommendation system by more than 10%), but the ad hoc anonymization was not as successful:
Narayanan and Shmatikov [11] were later able to re-identify individuals in the dataset, leading to a lawsuit
and the cancellation of subsequent competitions.

Differentially private query release is an attempt to solve this problem. Differential privacy is a strong
formal privacy guarantee (that, among other things, provably prevents re-identification attacks), and the
problem of query release is to release accurate answers to a set of statistical queries. As observed early on
by Blum et al. [2], performing private query release is sufficient to simulate any learning algorithm in the
statistical query model of Kearns [10].

Since then, the query release problem has been extensively studied in the differential privacy literature.
While simple perturbation can be used to privately answer a small number of queries [5], more sophisticated
approaches can accurately answer nearly exponentially many queries in the size of the private database
[1, 3,4, 12, 8, 7, 9]. A natural approach, employed by many of these algorithms, is to answer queries by
generating synthetic data: a safe version of the dataset that approximates the real dataset on every statistical
query of interest.

! This is an extended abstract of the full version of this paper [6], which contains full details of our algorithm and experiments.



Unfortunately, even the most efficient approaches for query release have a per-query running time linear
in the size of the data universe, which is exponential in the dimension of the data [8]. Moreover, this running
time is necessary in the worst case [13], especially if the algorithm produces synthetic data [14].

This exponential runtime has hampered practical evaluation of query release algorithms. One notable
exception is due to Hardt et al. [9], who perform a thorough experimental evaluation of one such algorithm,
which they called MWEM. They find that MWEM has quite good accuracy in practice and scales to higher
dimensional data than suggested by a theoretical (worst-case) analysis. Nevertheless, running time remains
a problem, and the approach does not seem to scale to high dimensional data (with more than 30 or so
attributes for general queries, and more when the queries satisfy special structure?). The critical bottleneck
is the size of the state maintained by the algorithm: MWEM, like many query release algorithms, needs to
manipulate an object that has size linear in the size of the data universe (i.e., exponential in the dimension).
This quickly becomes impractical as the record space grows more complex.

We present DualQuery, an alternative algorithm which is dual to MWEM in a sense that we will make
precise. Rather than manipulating an object of exponential size, DualQuery solves a concisely represented
(but NP-hard) optimization problem. Critically, the optimization step does not require a solution that is
private or exact, so it can be handled by existing, highly optimized solvers. Except for this step, all parts of
our algorithm are extremely efficient. As a result, DualQuery requires (worst-case) space and (in practice)
time only linear in the number of gueries of interest, which is often significantly smaller than the number of
possible records. Like existing algorithms for query release, DualQuery has a provable accuracy guarantee
and satisfies the strong differential privacy guarantee.

We evaluate DualQuery on a variety of datasets in the following table by releasing 3-way marginals
(also known as conjunctions or contingency tables), demonstrating that it solves the query release problem
accurately and efficiently even when the data includes hundreds of thousands of features. We know of no
other algorithm to perform accurate, private query release for rich classes of queries on real data with more
than even 100 features.

Dataset | Size Attributes | Binary attributes
Adult 30162 | 14 235

KDD99 | 494021 | 41 396

Netflix | 480189 | 17,770 17,770

Figure 1: Test Datasets
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