
Featherweight PINQ

(extended abstract)

Hamid Ebadi and David Sands

Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden

{hamid.ebadi,dave}@chalmers.se

Abstract. Differentially private mechanisms enjoy a variety of composition properties.
Leveraging these, McSherry introduced PINQ (SIGMOD 2009), a system empowering non-
experts to construct new differentially private analyses. PINQ is an SQL-like API which
provides automatic privacy guarantees for all programs which use it to mediate sensitive
data manipulation. In this work we introduce featherweight PINQ, an model capturing the
essence of PINQ. We prove that any program interacting with featherweight PINQ’s API
is differentially private.

1 Introduction

Of the many of papers on differential privacy, a mere handful (at the time of writing) describe
implemented systems which provide more than just a static collection of differentially private
operations. The first such system is the PINQ system of McSherry [3]. PINQ is designed to
allow non-experts in differential-privacy to build privacy-preserving data analyses. The system
works by leveraging a fixed collection of differentially private data aggregation functions (counts,
averages, etc.), and a collection of data manipulation operations, all embedded with a LINQ-
like interface from otherwise arbitrary C# code. PINQ mediates all accesses to sensitive data
in order to keep track of the sensitivity of various computed objects, and to ensure that the
intended privacy budget is not exceeded; a budget could be exceeded by answering too many
queries with too high accuracy. In this way PINQ makes sure that the analyst (programmer)
does not inadvertently break differential privacy.

Foundations of PINQ McSherry argues the correctness of PINQ by pointing out the foundations
upon which PINQ rests. In essence theses are:

1. A predefined collection of aggregation operations (queries) on SQL tables, each with a param-
eter specifying the required degree of differential privacy. Standard aggregation operations
such as (noisy) count and average are implemented. The core assumption is that each aggre-
gation operation Q with noise parameter ε, written here as Qε, is an ε-differentially private
randomised function.

2. Sequential composition principle: if two queries performed in sequence (e.g. with differential
privacy ε1 and ε2 respectively) then the overall level of differential privacy is safely estimated
by summing the privacy costs of the individual queries (ε1 + ε2).

3. Parallel composition principle: if the data is partitioned into disjoint parts, and a differ-
ent query is applied to each partition, then the overall level of differential privacy is safely
estimated by taking the maximum of the costs of the individual queries.

4. Stability composition: the stability of a database transformation T is defined to be c if when
ever you add n extra elements to the argument of T , the result of T changes by no more than
n×c elements. If you first transform a database by T , then query the result with an ε-private
query, the privacy afforded by the composition of the two operations is safely approximated
by c× ε.

Theses ”foundations” of PINQ provide an intuition about how and why PINQ works, but
although a novel aim of PINQ was “providing formal end-to-end differential privacy guarantees



2 Featherweight PINQ

under arbitrary use”, the foundations are inadequate to build an end-to-end correctness argument
since they fall short of describing number of PINQ features of potential relevance to the question
of its differential privacy:

– Sequential composition is described in an oversimplified way, assuming that the queries are
are chosen independently from each other. In practice the second query of a sequence is
issued by client code which has received the result of the first query. Thus the second query
may depend on the outcome of the first. To argue correctness this adaptiveness should be
modelled explicitly.

– Parallel queries partition data, but the data which is partitioned might not be the original
input, but some intermediate table. The informal argument for taking the maximum of the
privacy costs of the query on each partition relies on the respective queries applying to
disjoint data points. But the data might not be disjoint when seen from the perspective of
the original data set of individuals. Data derived from a participant might end up in more
than one partition, so a correctness argument must model this possibility to show that it is
safe.

– As for sequential composition, parallel queries are not parallel at all, but can be adaptive -
the result of a query on one partition might depend on the result of a query on another. This
means that the implementation it greatly complicates the bookkeeping necessary to track
the ”maximum” cost of the queries.

– The foundations suggest how to compute the privacy cost of composed operations from their
privacy and stability properties. But in practice PINQ does not measure the amount of
privacy lost by a PINQ program, it enforces a stated bound. Because of this, there are two
kinds of results from a query: the normal noisy answer, or an exception. An exception is
thrown if answering the query normally would break the global privacy budget. To prove
differential privacy it is not enough that the query is differentially private in the normal case
– it must also be shown to be private in the case when an exception is thrown, since this
information is communicated to the program.

In this paper we provide an idealised foundation for PINQ by defining a minimalistic seman-
tics, intended to model it’s essence, while at the same time abstracting away from less relevant
implementation details. In particular we model the client program completely abstractly as a
deterministic labelled transition system which interacts with tables via the PINQ-like API but
which is otherwise unconstrained. Our model includes all of the points above, with the exception
of one: the adaptive “parallel” queries. That particular feature would require a more elaborate
graph data structure to track the relationships between entities, and in the current version we
only model a simpler non-adaptive parallel query.

For this model we prove differential privacy against any program.
Much of PINQ is abstracted away by our model. In fact the C# implementation of PINQ

does not successfully encapsulate the all the protected parts of the system, and so some programs
can violate differential privacy by bypassing the encapsulation [2], or by using side effects in
places where side-effects are not intended. By idealising the interface we make clear the intended
implementation, but not the details of its realisation in any particular language.

2 Model for the Idealised System

For a system to provides differential privacy it should behave similarly when the environment
is initialized with two neighbouring input tables. Similar behaviour means that the probability
of any outcome (trace of execution with an arbitrary size) when the system runs an arbitrary
analysis is close and in the range specified by privacy budget (ε). Here the trace of a program is
a sequence of internal (silent) steps and query results that are generated as a result of execution
of the analysis on the database.

We use a simplified model of PINQ to prove properties we are interested in. In this section we
explain our model in more detail and describe the difference between PINQ and our simplified
proposed model.



Featherweight PINQ 3

Our model splits the system into a program, and the protected system which comprises an
environment which maps program variables to tables, plus additional information needed to track
stability and global budget information. The program interacts with the protected system by the
following operations:

Silent operation The silent operations are introduced to mimic a class of operations that don’t
have any effect on the private tables or the global budget but instead change the client pro-
gram state. Once a query is executed the query result is not considered private any more and
computation on it is allowed outside the protected environment.

Assignment The model allows the program to manipulate a table using transformation and
assign a new value to table variables. These are viewed as commands issued to the protected
system. Instead of discussing about each transformation individually, we generalize it to a n-arity
transformation with known stability for each argument (as described in the introduction).

Transformations Programs request transformations to be made on data by issuing a transfor-
mation command of the form tv := F (tv1, . . . , tvn) where F denotes a table transformer (with
bounded stability), and tv , tv1, . . . are table variables referring to tables in the environment.

Bookkeeping: Protected table & Scaling factor The environment describes, for each table variable,
the table T that it represents, together with its scaling factor, s, which is a bound on the product
of the stabilities of the transformations used to produce T .

Query A queries is the application of a (ε-) differentially private operation Qε on a target table.
Again we do not specify a particular set of such operators.

One major difference between the model and the actual system is the way queries are executed.
In the model we treat the case of a parallel query only. The standard single query being a simple
instance of this.

The amount of noise that has to be added is proportional to the ε and total function sensi-
tivity of all transformation. Scaling factor for a table represent the total function sensitivity of
transformations that used to construct the table.

A query is specified with the following four arguments:

1. tv , refers to the table to be used for the analysis,
2. f , is the partitioner/key selector function that assigns/maps each record to a value in
{1, . . . , k} for some k ∈ N,

3. a vector of j (j ≤ k) ε-DP queries
−→
Qε, where the ith query will be applied to all records

which f maps to i.

Query execution The result of execution of a query depends on available budget and the scaling
factor for the table. There is enough budget if the scaling factor of the table times the cost of the
queries does not exceed the global budget. If enough budget was available, a list of values −→v with
the same size as number of queries is returned as the execution result. Otherwise ⊥ is returned to
the client program to inform it about insufficient budget. This models PINQ’s budget exception.
A simplification in this query model relates to sub-queries that are passed to be executed in the
parallel. In PINQ each sub-query may depend on the result of another sub-query, while in this
model these queries are presented to the system at the same time.

The Protected System The protected system is responsible to maintain the protected data and
provide the client request with responses to queries. It also implements budgeting routines that
ensures the budget consumption is under control and information leakage restrictions are en-
forced. The protected system can be described with following

1. a global privacy budget (a positive real) the overall remaining privacy budget
2. a table environment which maps each table variable to the protected table (table and scaling

factor pair).



4 Featherweight PINQ

The initial state of the protected system is that some distinguished variable holds the input
database of individuals, with scaling factor 1, the global privacy budget is set to the desired
privacy degree, and the remaining table variables contain empty tables with scaling factor 0.

Client Program Model The probabilistic labelled transition system specified in Figure 1 defined
featherweight PINQ. The model is inspired by our recent work on modelling a related system
[1].

ProgAct ::= τ Silent step

| tv := Expr Assignment

| (tv , f,
−→
Qε ? −→v ) Primitive Queries returning vi ∈ Val

f ∈ (Tables→ {1, . . . , k})
−→
Qε ∈

∏
k

Qε(k)

Expr ::= tv table variable

| T Table literal, T ∈ Table

| F (tv1, . . . , tvn) Transform

Fig. 1. ProgAct-labelled transition system

Every label represents an interaction between a client program and the protected system. The
labels represent the observable output of a system which are a sequence of two kinds of actions:
internal (silent) steps (τ) modelling no interaction, and vectors of values −→v which are the results
of some query being answered and returned to the program.

To define these transitions, we assume a client program modelled by a labelled transition
system modelling the API to the protected system. For client programs, the label corresponding

to a query call is of the form (tv , f,
−→
Qε ? −→v ) and models the query (as described above) and the

returned result as a single event. The reason for this is that it allows us to model value passing
without needing to introduce any specific syntax for programs. Note that the value returned
by the query is known to the program, and the program can act on it accordingly. From the
perspective of the program and the protected system together, this value will be considered an
observable output of the whole system.

Formally, the client program is a labelled transition system 〈P,→, P0〉, where P is all possible
program states and P0 is the initial state of the program, and the transition relation → ⊆
(P× ProgAct× P) has labels ProgAct.

We assume the system is deterministic (up to results accepted from queries) and deadlock
free (can always make a transition).

Configuration Semantics Each configuration is consist of program, global privacy budget and
its protected system. In configuration 〈P,E,B〉, P is our program, E ranges over the protected
table environments and B is a numerical value ranges over possible values for global budget.
Configurations are defined as follows:

〈P,E,B〉 ∈ Config
def
= P× (TVar→ (Table× N))×R+

Operational Semantics The operational semantics of configurations is given by a “probabilistic”

labelled transition relation with transitions of the form C
a−→p C

′ where a ∈ Act
def
= {τ} ∪ Val,

and probability p ∈ [0, 1]. The definition is given by cases in Figure 2.



Featherweight PINQ 5

Silent
P

τ−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉

Assign
P

tv :=e−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E[tv 7→ (F (T1, . . . , Tn), s)], B〉
where


e = F (tv1, . . . , tvn)

E(tv i) = (Ti, si)

Sensitivity(F ) = (c1, . . . , cn)

s =
∑
ci × si

Query (out of budget)
P

(tv,f,
−→
Qε ? ⊥)−−−−−−−−−→ P ′

〈P,E,B〉 ⊥−→1 〈P ′, E,B〉
where ε · s > B and E(tv) = (T, s)

Query
P

(tv,f,
−→
Qε ? −→v )−−−−−−−−−→ P ′

〈P,E,B〉
−→v−→p 〈P ′, E,B − s · ε〉

where ε · s ≥ B and


E(tv) = (T, s)

(T1, ..., Tn) = f(T )

Pr(
−→
Qε(
−→
T ) = −→v ) = p

Fig. 2. Operational Semantics

3 Conclusion

In this paper we presented a model for PINQ framework and other similar differentially private
systems. Using the model we proved that the primitives and composition of them will not break
the differential privacy guarantee promised by such systems.

References

1. Hamid Ebadi, David Sands, and Gerardo Schneider. Differential privacy: Now it’s getting personal. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15. ACM, 2015.

2. Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. Differential privacy under fire. In
USENIX Security Symposium, 2011.

3. Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of
data, pages 19–30. ACM, 2009.


