
Personalised Differential Privacy

Summary of POPL’15 paper
“Differential Privacy: Now It’s Getting Personal”

Hamid Ebadi and David Sands

Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden

{hamid.ebadi,dave}@chalmers.se

Abstract. Differential privacy provides a way to get useful information about sensitive
data without revealing much about any one individual. It enjoys many nice composi-
tionality properties not shared by other approaches to privacy, including, in particular,
robustness against side-knowledge.
Designing differentially private mechanisms from scratch can be a challenging task. One
way to make it easier to construct new differential private mechanisms is to design a system
which allows more complex mechanisms (programs) to be built from differentially private
building blocks in principled way, so that the resulting programs are guaranteed to be
differentially private by construction.
This paper is about a new accounting principle for building differentially private programs.
This approach is based on a simple generalisation of classic differential privacy which we
call Personalised Differential Privacy (PDP). In PDP each individual has its own personal
privacy level. We describe ProPer, a interactive system for implementing PDP which main-
tains a privacy budget for each individual. When a primitive query is made on data derived
from individuals, the provenance of the involved records determines how the privacy bud-
get of an individual is affected: the number of records derived from Alice determines the
multiplier for the privacy decrease in Alice’s budget. This offers some advantages over
previous systems, in particular its fine-grained character allows better utilisation of the
privacy budget than mechanisms based purely on the concept of global sensitivity, and it
applies naturally to the case of a live database where new individuals are added over time.
We provide a formal model of the ProPer approach, prove that it provides personalised
differential privacy, and describe a prototype implementation based on McSherry’s PINQ
system.

Differential privacy is a relatively new notion of privacy [1–3]. The theory shows that by
adding the right amount of noise to statistical queries, one can get useful results at the same
time as providing a quantifiable notion of privacy. Its definition does not involve a syntactic
condition on the data itself, but rather it is a condition formed by comparing the results of a
query on any database with or without any one individual: a query Q (a randomised function)
is ε-differentially private if the difference in probability of any query outcome on a data-set only
varies by a factor of eε (approximately 1 + ε for small ε) whenever an individual is added or
removed.

Research on differential privacy has developed a variety of query mechanisms that provide
differential privacy for a useful range of statistical problems. A few works have focussed more on



2 Personalised Differential Privacy

composition principles that allow new differential private mechanisms to design a system which
allows more complex mechanisms (programs) to be built from differentially private building
blocks in principled way, so that the resulting programs are guaranteed to be differentially private
by construction [6, 5, 7]. PINQ [6] is the starting point for the present work.

PINQ-style Global Privacy Budget PINQ is an implementation of interactive differential privacy
which ensures, at runtime, that queries adhere to a global privacy budget. Third-party client
code freely decides how sensitive data sets should be processed and queried. The run-time system
ensures that this does not break a specified privacy budget ε. PINQ builds on a collection of
standard differentially private primitive queries, together with simple composition principles –
mathematical properties enjoyed by the definition of differential privacy. One central principle is
that multiple queries (e.g. with differential privacy ε1 and ε2 respectively) have an additive effect
(ε1+ε2) on the overall differential privacy. Another central idea is to track sensitivity of functions
to measure how much a change in the input might affect the value of the data. Together, these
components allow the system to track how much to deduct from the global privacy budget on
each invocation of a primitive query.

Limitations of the Global Privacy Budget In a batch system where all computations are described
up-front as a monolithic program, a global budget is reasonable. In an interactive system, how-
ever, there are several limitations to this style of accounting. Imagine a scenario involving a large
data set of individuals – a cross-set of the population – containing various information about
health and lifestyle. Let us suppose, further, that we aim for ε-differential privacy for some
specified value of ε. On Monday the analyst selects all the people from the database who have
a particular blood type, AB-negative, and constructs an algorithm which extracts information
about them as part of medical research. Since just 0.6% of the population have this blood type,
the proportion of the database involved in this study is relatively small, but the database is
known to be big enough for it to be meaningful. Let us suppose that the cost of this analysis,
according to the system, is ε1. Now on Tuesday the analyst gets a new task, to extract informa-
tion about the lifestyle of smokers, towards an advertising campaign for nicotine gum. This is a
significantly larger portion of the database, possibly overlapping Monday’s research group. The
analyst has ε− ε1 left to spend. If ε1 is large, the analyst has blown the budget by analysing the
small group, even though that study did not touch the data of the larger part of the population.
PINQ offers a way around this problem by adding non-standard database primitives. Here we
would partition the data into (AB−, not AB−) and perform the two studies in parallel, with
cost being the maximum of the cost of the two studies.

This leads to a batch-style reasoning and an unnatural programming style. But it also has
another limitation. What if the database is live – we obtain new data over time, or if data is
continually being added? A global budget forces us to be unnecessarily pessimistic about new
as-yet unexploited data.

Personalised Differential Privacy This paper addresses these issues by offering a simple generali-
sation of differential privacy called personalised differential privacy (PDP) [4] which permits each
individual to have a personalised privacy budget. The definition supports generalised versions
of the composition principles upon which systems like PINQ are based, and moreover enjoys a



Personalised Differential Privacy 3

number of properties which allow for less wasteful compositional principles. For example, any
query about the drinking habits of adults offers 0-differential privacy for Adrian, aged 13, as it
does for any records of individuals which enter the database after the query has been made.

Definition 1 (Personalised (Big Epsilon) Differential Privacy). We say that data sets A

and B differ on record r, written A
r∼ B, if A can be obtained from B by adding the record r, or

vice-versa.
Let E be a function from records to non-negative real numbers. A randomized query Q provides

E -differential privacy if for all records r, and all A
r∼ B, and any set of outputs S ⊆ range(Q),

we have: Pr[Q(A) ∈ S] ≤ Pr[Q(B) ∈ S]× eE (r)

Personalised differential privacy allows each individual (record) to have its own personal privacy
level. This may turn out to be a useful concept in its own right, but its main purpose in this
work is as a generalisation that permits a more fine-grained accounting in the construction of
classical differentially private mechanisms, and one which plays well with dynamic databases.
The following proposition summarises the relation to “small-epsilon” differential privacy:

Proposition 1.

(i) If Q is ε-differentially private, then Q is λx.ε-differentially private.
(ii) If Q is E -differentially private, and sup(range(E )) = ε then Q is ε-differentially private.

Now we consider the composition principles analogous to those above. We keep the presentation
informal since we will not apply these principles directly in our formal developments – rather they
provide an intuition behind the approach. Most of the principles above generalise to personalised
differential privacy.

Query Composition In the sequential composition of queries, if Q1 and Q2 are E1 and E2-
differentially private, respectively, then applied in sequence they yield a λx.E1(x)+E2(x)-differentially
private query. For parallel queries let us be a little more precise:

Let {Ri}i∈I be a partition of the set of all records, and {Qi}i∈I be a set of queries. we define
a parallel query P (A) = Πi∈IQi(A∩Ri) where Π is just the n-ary cartesian product of sets.
Now we have the following natural generalisation of the parallel query principle:

If Qi is Ei-differentially private then P is E -differentially private, where E (r) = Ei(r) if
r ∈ Ri.

Now we introduce the first specialised principle which takes advantage of the fine-grained nature
of personalised differential privacy, the selection principle:

For set A, define selectA(x) = x∩A. If Q is E -differentially private, then Q ◦ selectA is
E [r 7→ 0 | r 6∈ A]-differentially private.

Here E [r 7→ 0 | r 6∈ A] denotes the function which maps every element outside A to 0, and behaves
as E otherwise. In simple terms, a query which operates on A is perfectly private for individuals
outside of A. In contrast, the composition principle of ε-differential privacy has nothing helpful
to say here: the sensitivity of the selection function is 1.



4 Personalised Differential Privacy

How does this help us? It can show how the sequential composition principle for E -differential
privacy gives greater accounting precision. Specifically, parallel composition is simply no longer
necessary to give a reasonably accurate estimate of privacy cost. Suppose we compute P (A) by
sequentially computing Qi ◦ selectRi . Then the sequential composition principle calculates the
cost of this iterated sequential composition as

λx.Σi∈I(if x ∈ Ri then Ei(x) else 0)

which is precisely the cost calculated for the parallel query.

Sensitivity Composition The sensitivity composition principle also lifts into the world of person-
alised differential privacy:

If data-set transformer F has sensitivity c, and Q is
E -differentially private, then Q ◦ F is λx.(E (x)× c)-differentially private.

The proof analogously follows easily from the following scaling property: If data sets A and B
differ on elements C, then

Pr[Q(A) ∈ S] ≤ Pr[Q(B) ∈ S]× exp(Σr∈CE (r)).

The Personalised Sensitivity Principle A key feature of personalised differential privacy is that it
supports a fine-grained composition property for a large and important class of functions, namely
functions that are union preserving. A function F from multisets to multisets is union preserving
if F (A]B) = F (A)]F (B), A]B denotes the additive union of multisets A and B. In standard
relational algebra, for example, all functions are union preserving in each of their arguments,
with the exception of the (multi-)set difference operator which is not union preserving in its
second argument. Complex union-preserving functions may be built from simple ones as they are
closed under compositions.

The characteristic property of union preserving functions is that their behaviour can be
completely characterised by their behaviour on individual records. This gives us a completely
precise way to compute the influence of a single record on the result of the function, since
F (A ] {r}) = F (A) ] F{r}. This leads us to the following.

Lemma 1. If F is a union-preserving function and Q is E -differentially private, then Q ◦ F is
(λx.Σs∈F{x}E (s))-differentially private.

Taking E = λr.ε yields the following useful corollary which is the core of our approach to
combining existing differentially private mechanisms with our personalised approach:

Corollary 1. If F is a union-preserving function and Q is ε-differentially private, then Q ◦ F
is (λx.size(F{x})× ε)-differentially private.

From these principles we design a system, in the style of PINQ, called ProPer (Provenance
for Personalised Differential Privacy. The ProPer system maintains a personal budget for every
record entering the system. Instead of using sensitivity, ProPer tracks the provenance of every
record in the system, and uses the exact provenance to calculate how a query should affect the
budgets of the individuals. Unlike PINQ, the system is described as an abstract formal model



Personalised Differential Privacy 5

for which we prove personalised differential privacy. This is important because the correctness
of ProPer is not obvious for two reasons. Firstly, the individual budgets become highly sensitive
and how we handle them is novel. More specifically, if a query involves records that would break
the budget of an individual they are silently dropped from the data set upon which the query is
calculated. In the example above, Tuesday’s analysis of smokers will automatically exclude data
derived from any diseased individuals as soon as the cost of the queries exceeds their budgets.
Secondly, it is necessary to restrict the domain of computations over data sets to a class which
guarantees that the provenance of any derived record is affine (zero or one record), otherwise
the number of records which might get excluded due to a small change in the input might be too
big to give privacy guarantees.

The approach is suitable for integration with other systems, since we assume the existence
of basic primitives providing classical differential privacy. We have implemented a prototype of
the ProPer approach which extends the PINQ system with personalised budgets and the ability
to input live data. We compare the performance of our provenance-based implementation with
PINQ to show that the runtime overhead is not significant.

1 Conclusion

We have introduced a new concept of personalised differential privacy (PDP) that improves
the bookkeeping regarding the cost of composed queries, and makes it easy to include dynamic
expansion of the data base. We have realised this idea in the design of ProPer, a system which
enforces PDP for all (deterministic) client programs that compute against a simple API. We have
proved that the ProPer model provides personalised – and therefore also standard – differential
privacy.

References

1. Cynthia Dwork. Differential privacy. In ICALP (2), volume 4052 of LNCS, pages 1–12. Springer,
2006.

2. Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applications of Models of
Computation, pages 1–19. Springer, 2008.

3. Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1), January 2011.
4. Hamid Ebadi, David Sands, and Gerardo Schneider. Differential privacy: Now it’s getting personal. In

Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15. ACM, 2015.

5. Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. Differential privacy under fire. In
USENIX Security Symposium, 2011.

6. Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of
data, pages 19–30. ACM, 2009.

7. Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel. Airavat:
Security and privacy for mapreduce. In NSDI, pages 297–312. USENIX Association, 2010.


